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Southwestern Australia Acid-Saline Mineralogy: 
Observations from Reflectance Spectroscopy 
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Abstract— Acid-saline sediments in shallow-lake environments 
in southwestern Australia host complex mineralogical suites 
representing long-term weathering and modern extreme acid 
saline chemistry. It is not known whether large-scale reflectance 
spectroscopy datasets from watersheds across the Yilgarn Craton 
show regional mineralogical variability. This study assesses over 
2,500 spectra from datasets of shallow subsurface sediments by 
using automatic minima detections for spectral features of 
interest. Integrating microscopic and spectral observations show 
that proportionally similar mineral assemblages exist in a variety 
of recognizable textures. Spectral results indicate iron oxide and 
phyllosilicates are the most detected mineral types, alongside less 
common alunite, jarosite, and gypsum. The difference in detection 
abundance by percentage for mineral groups, particularly iron 
oxides, accounts for the largest regional variation observed in 
spectra. Spectral feature characteristics show significant regional 
variation for iron oxide, alunite, and hydrated mineral 
absorptions. The spectral observations align with previous 
mineralogical observations of these landscapes and the expected 
weathering evolution for granitoids, where Al-phyllosilicates and 
iron oxides are most prevalent. Observations of these mineral 
suites enhance understanding of regional differences and 
similarities in chemical precipitates and products of water-rock 
interaction in extreme acid-saline environments and have 
implications for studying sediments and rocks on Mars.  
 

Index Terms— Acid-Saline Sediments, Australia, Iron Oxides, 
Mars-Analog, Mineralogy, Minima, Reflectance Spectroscopy 

I. INTRODUCTION 
HE geology of southwestern Australia presents a rare 
acid-saline terrestrial environment which 
contemporarily reflects the consequences of over 60+ 

m.y. of extreme weathering and water-rock interactions. Some 
of the landscape is characterized by thick regolith, up to 50+ m 
in depth, with widely distributed shallow and ephemeral lakes, 
some with very extreme chemistries. These lakes experience 
frequent flooding, evapoconcentration, and desiccation cycles 
and are associated with proximal ephemeral fluvial channels, 
mudflats, sandflats, and aeolian deposits, in a semi-arid climate 
[1]–[5]. Previous analyses show that lakes and groundwaters 
have complex and extreme compositions. Some lake waters are 
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very acidic, with pH measured as low as 1.4, and groundwaters 
are also typically acidic with an average pH of ~3 [6]–[8]. These 
waters have been observed with total dissolved solute 
concentrations up to ~10 times more saline than seawater with 
water activity as low as 0.717 for the most acidic waters [1], 
[6], [8]–[10]. However, acidity and salinity of lake and 
groundwater spatiotemporally vary from mild-to-extreme in 
response to flooding and evapoconcentration, with no apparent 
regional chemical gradient, such that multiple samples from an 
individual lake or samples from proximal lakes may vary 
significantly both spatially and temporally, due to the impact of 
localized heterogeneity in composition and surface processes. 
High concentrations of Fe, Al, Si, S, and other major elements 
are present in these waters, ultimately providing the necessary 
constituents for rapid and extensive chemical precipitation as 
well as alteration of the regolith and bedrock [6], [7]. A wide 
array of minerals has been observed in the sediments, and the 
sediments show combined characteristics of argillic ferricretes 
and sulcretes [11]. In particular, the mineral suite represents 
long-term supergene weathering and acid-saline precipitation 
[1], [2], [5], [6], [8], [12], [13]. These observations have also 
delineated that the sediment mineralogies in the surface and 
near-surface environments of these lakes are primarily Al-rich-
phyllosilicates (mainly kaolinite – Al2Si2O5(OH)4), iron oxide 
(hematite – Fe2O3 and goethite – FeO(OH)), halite (NaCl), 
gypsum (CaSO4·2(H2O)), alunite (KAl3(SO4)2(OH)6), jarosite 
(KFe3(SO4)2(OH)6), and quartz (SiO2).  

The minerals at acid saline lakes form through various 
processes, including aqueous and eolian deposition in 
paleochannels, shallow lakes, and associated shorelines and 
dunes, chemical precipitation from surface waters, weathering 
of pre-existing rocks, and diagenetic precipitation from 
groundwaters. Evaporites such as halite and gypsum commonly 
form as chemical sediments from lake waters, resulting in beds 
of crystals. Kaolinite, iron oxides, and quartz commonly are 
weathering products; they are retained in the regolith due to low 
amounts of mass removal, but are also found as chemical 
precipitates [14]. Abundant reworking due to sheet floods and 
winds entrain, transport, and deposit these minerals, including 
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the halite and gypsum. Diagenetic formation of minerals has 
been documented by multiple studies, finding that all the 
dominant minerals are formed through various early-diagenetic 
processes based on interactions with existing regolith, 
sediments, and local waters [1], [2], [12], [13]. Associated with 
diagenesis and weathering, very-fine grains, as small as 0.25 
micrometers, are prevalent [12]. In contrast to the other 
dominant minerals, alunite and jarosite are solely diagenetic 
precipitates, vary regionally, and are diagnostic of acidic, 
oxidized waters,  [15]–[19].  

This study explores mineralogical differences of two acid 
saline lake watersheds in southwestern Australia based on 
reflectance spectroscopy of regional sediments. We test 
whether site-based mineralogical characteristics derived from 
spectra can be linked to regional differences in basement 
geology and/or surface water geochemistry. Previous studies 
investigating the mineralogy of southern Western Australia 
provide major, minor, and trace element data, as well as 
crystallographic, and reflectance spectroscopic analyses of 
relatively constrained datasets (n < 50) from many study sites, 
including the areas studied here (Table A1) [1]. [2], [3], [6], [7], 
[9], [12]. However, the use of reflectance spectroscopy to 
explore regional mineralogy differences is limited; this work 
provides insight to how spectral characteristics vary across 
highly mixed, complex sediments, with focus on the established 
suite of primarily observed minerals.  

Visible-to-short-wave-infrared (VSWIR) reflectance 
spectroscopy (between 350-2500 nm) provides a powerful, 
non-destructive method of identifying materials based on the 
wavelengths of light that are absorbed and reflected. VSWIR 
reflectance spectroscopy has limitations, especially when used 
for fine-grained and heterogeneous sediments, such as those in 
acid-saline lake systems. Intimate mixing of multiple pure or 
mixed compositional grains/crystals complicates mineralogical 
identification and the ability to determine proportions of mixed 
compositions, as does morphological heterogeneity due to 
coatings or deformation of the grains. Intimate mixing occurs 
when grain sizes are small enough to allow for a single photon 
to interact with multiple grains and where internal grain 
reflections may occur, or where the field-of-view of the 
spectroradiometer incorporates a swath of photon paths. The 
result of intimate mixing is non-linear spectral mixing, such that 
a spectral feature can be shifted, subdued, and/or accentuated. 
Many of the key minerals in this system show spectral variation 
for nearly-pure samples and exhibit spectral features similar to 
one another, such as most phyllosilicates, which can result in 
broad, shifted or overlapping spectral features when mixed due 
to the combination of slightly offset overtones [20], [21]. 

Variability of the spectral character of iron oxides shift due 
to grain size or mineral phase differences and can be observed 
in the spectra based on shifts in the absorption wavelength 
location (minima) and the width and shape of the absorption 
feature [22]. For continuum-removed spectra (the focus from 
herein), hematite displays a broad diagnostic crystal field 
absorption near 900 nm (Figure 1a), while goethite displays a 
broad crystal field absorption near 960 nm (Figure 1b) [13], 
[23], [24]. The absorption feature for both hematite and goethite  

Fig 1. Continuum-removed visible-to-shortwave-infrared 
(VSWIR) spectra spanning from 350-2500 nm illustrating 
diagnostic absorption features for pure spectra from the USGS 
Spectral Library (Clark et al., 2007) as well as three example 
spectra from sediments assessed in this study. Spectra names, 
from bottom to top, are sediment example 1 (LA2 690-695 cm), 
sediment example 2 (WA3_022), sediment example 3 (LA2 
3040-3045 cm), sediment example 4 (LB 505-510 cm), 
hematite (GDS27), goethite (WS222 Crs), jarosite (JR2501), 
alunite (GDS83), gypsum (SU2202), and kaolinite (CM3 
BECKa). Spectra are offset for clarity, where the y-axis tick 
intervals represent 0.25 reflectance.  

 
 
shifts from shorter to longer wavelengths, depending upon fine 
or coarse grain size, respectively [23]. 

The diagnostic spectral features for phyllosilicates arise from 
vibrational overtones of O-H and H-O-H (water), where O-H 
bonds are part of the mineral structure being bound to a metal 
cation adjacent to octahedral layers and water is typically 
adsorbed to the crystal surface or trapped in an interlayer. For 
pure phyllosilicates, individual or combined overtone O-H 
vibrations are located as absorptions near 1400 nm (O-H stretch 
overtone) and between 2200-2500 nm (metal-O-H bends and 
combinations), while absorptions due to H-O-H vibrational 
overtones are located near 1410 nm and 1920 nm [20], [21], 
[25]. O-H and H-O-H absorption features both occur near 
~1400 nm. Pure kaolinite spectra contain an Al-O-H doublet 
absorption feature near 2166 and 2211 nm (Figure 1f). 

Gypsum has H-O-H and O-H spectral absorption features 
located at ~1410, 1750, 1950, and 2200 nm (Figure 1e). A 
sample with a significant amounts of gypsum will show a 
diagnostic triplet feature near 1400 nm, composed of three 
absorptions near 1410, 1430, and 1510 nm [21], [23]. However, 
when the gypsum is in a mixed sample, the triplet signal is 
commonly subdued, and the feature appears to be broad with an 
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absorption center located near 1410 nm. The absorption feature 
near 1750 nm is a strong, diagnostic feature, unlike the 
absorptions near 1400, 1900 and 2200 nm which can be 
confused with other mineral absorptions.   

Jarosite and alunite are typically early diagenetic precipitates 
in these sediments, forming intergranular cements commonly 
accompanied by iron oxides. Jarosite, containing iron and 
hydroxyl complexes, displays a crystal field iron absorption 
feature near 940 nm, between the wavelength locations for the 
diagnostic hematite and goethite absorptions, as well as a 
diagnostic Fe-O-H absorption feature near 2264 nm (Figure 1c) 
[21], [23]. Alunite spectra contain Al-O-H absorption features 
which are shifted from the typical Al-O-H absorption features 
due to SO4, seen as a doublet near 1400 nm and distinct 
absorptions near 1770 and 2170 nm (Figure 1d). Conversely, 
alunite contains a ~2320 nm OH-stretch absorption which is 
diagnostic and will be used here for primary alunite 
identifications as the other alunite absorptions overlap with 
phyllosilicate and gypsum features. Quartz is not detectable 
with VSWIR spectra as it is transparent. 

This study focuses on three sites with varying basement 
geology and history of surface processes in southern Western 
Australia: Lake Aerodrome, Lake Brown, and Twin Lakes 
(Figure 2). For this research, these three lakes were split 
between two study regions referred to here as Brown and 
Norseman, both of which host many other lakes. The two 
regions are delineated by surrounding watershed or 
paleodrainage extent, where the Brown region hosts Lake 
Brown, and the Norseman region hosts Lake Aerodrome and 
the Twin Lakes. Each basin has unique, but not homogeneous, 
geochemical boundary conditions based in differences in 
bedrock geology, weathering history, hydroclimate, and local 
land use. These sites were once likely hydrologically connected 
as part of the paleodrainages, however, each site is a modern 
closed based and there is no known connected surface flow 
between the sites. 

We hypothesized that regional mineralogical variation would 
be spectrally manifested between these two paleodrainages 
through shifting of absorption feature minima wavelengths, due 
to unique spectral mixing characteristics at each site such as 
grain size distributions, mineral volume percentage ratios, 
adsorbed species and trace element geochemistry, and the 
physical extent of mixing.  

A large VSWIR spectral dataset from shallow core sediments 
from Lakes Aerodrome and Brown, consisting of 2,534 spectra 
in the 350 to 2500 nm range, was produced [26]. In conjunction, 
a smaller spectral dataset composed of 54 spectra from Twin 
Lakes was derived from bedrock and surficial sediment 
samples, as there is negligible regolith at that site. Airborne 
hyperspectral imagery, collected from Lake Brown and Twin 
Lakes in 2010, are processed for additional mineralogical 
context. Microscopy observations from Lake Aerodrome 
sediments are presented to provide additional information about 
the nature of these sediments as well as insight into spectral 
characteristics.  

 

Fig 2. Modified regional 1:100,000 state interpreted 
generalized bedrock lithology geologic map [27] subset to the 
two study regions paleodrainage extents, as derived by DEM 
analysis. Inset map in upper right to orient location in southwest 
Australia. Scale masks localized observations of various 
bedrock outcrops at each site. 
 

II. METHODS 

A. Samples and Datasets 
Spectra was collected at 5 cm intervals through four sediment 

cores from Lake Brown and Lake Aerodrome, creating a dataset 
with 2,534 spectra (see Appendix). These sediment cores were 
collected in 2009 (Figure 3) [9], and have a maximum depth of  
~50 m. There are two core datasets from both sites: LA1 (Lake 
Aerodrome 1, n = number of spectra =425)), LA2 (n = 1186), 
LB1 (Lake Brown 1, n = 465), and LB2 (n = 457). Cores were 
drilled by Boart Longyear using microsonic, dry drilling 
techniques so drilling would not alter mineralogy and 
stratigraphy would be preserved. Ten-cm diameter cores were 
collected in Lexan clear plastic core liners. Drilling was funded 
by an NSF grant to K. Benison, B. Bowen, and F.E. Oboh-
Ikuenobe, with partnership from the Geological Survey of 
Western Australia and permission granted by Western 
Australia’s Department of Environment and Conservation. The 
cores were archived at the Kalgoorlie office of the Geological 
Survey of Western Australia, and representative samples are 
stored at West Virginia University and the University of Utah.  

Samples were analyzed with an Analytical Spectral Device 
(ASD) FieldSpec 3 spectroradiometer at Purdue University 
(cores) and University of Utah (surficial sediments). At each 5 
cm interval, core sediment was pulverized, then spectrally 
analyzed with a contact probe to control lighting conditions and 
minimize atmospheric path length. For all ASD analysis, the 
spectroradiometer was calibrated at regular intervals (5-20 
minutes) using a Spectralon white reference panel. 

Airborne-based hyperspectral HyMap [28] datasets for Lake 
Brown and Twin Lakes were collected by HyVista in 
collaboration with B. Bowen and K. Benison in 2010. Multiple  
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Fig 3. Photographs of representative core slabs from Lake 
Aerodrome (LA1, LA2) and Lake Brown (LB1, and LB2). 
 
 
flight lines were stitched together to encompass the Lake Brown 
area and a single flight line covered the Twin Lakes area. 

B. Spectral Processing Methods 
Laboratory spectra acquired with the ASD are splice 

corrected and saved as reflectance spectra prior to processing, 
although many spectra show a minor splice-error post 
correction. For spectra to be as comparable and consistent as 
possible, continuum removal is applied to all spectra across all 
wavelengths to remove the convex hull (extrapolated local 
maximum) using ENVI 5.6 (L3Harris). Continuum removal can 
cause the shifting of spectral features up to 50 nm (seen in this 
study) where the slope of the convex hull is steep. Therefore 
continuum-removed spectra cannot be used for direct 
comparisons with regular spectra. Continuum-removed spectra 
were processed with functions written in Python to 
automatically detect absorption features for all spectra, where 

limits to the width, prominence, and distance between features 
are implemented to avoid detecting noise or unwanted features.  

Automatic detection of spectral features is important for this 
study to take advantage of the thousands of acquired spectra and 
avoid the tedious task of manual absorption feature detection. 
The Python functions used for the automatic detection of 
spectral features are published by the authors as a package, 
called RSAbs (Reflectance Spectroscopy Absorptions) and are 
available online (see Appendix). Lower and upper wavelength 
limits (absorption band short and long absorption band shoulder 
wavelengths) were defined for the detection of each absorption; 
the limits used are: 2175 to 2225 for Al-OH, 1400 to 1430 nm 
for lower H-O-H, 1875 to 1925 nm for upper H-O-H, 1745 to 
1760 nm for gypsum, 2315 to 2325 for alunite, and 2260 to 
2270 nm for jarosite. 

The datasets of absorption feature central wavelengths were 
processed to histograms as well as Kernel Density Estimate 
(KDE) probability density functions, which act as smoothed 
and extrapolated histograms, to assess absorption distributions 
[29]–[31]. KDE assessments differ from histograms in that they 
non-parametrically estimate the probability density function of 
a random variable, based on a set bandwidth, and the 
continuous extrapolation of probability density provides details 
regarding how minima would be distributed with a larger 
population. Histogram bin widths were set to 10 nm, while the 
KDE factor used to control KDE bandwidths range from 0.001-
0.5 depending on the spectral range for each feature.  

In addition to automatic absorption feature detection 
algorithms, polynomial fitting was applied to spectra between 
820 to 1200 nm to eliminate effects of noise and smaller 
overprinted absorptions which degrade the ability to accurately 
delineate the minima of iron crystal field absorptions. 
Polynomial fitting was also performed utilizing author written 
code in Python (see Appendix), where a fourth-degree 
polynomial equation is calculated for each spectrum, given the 
wavelength limits, and the local minima is calculated from each 
polynomial equation. The resulting lists of local minima were 
filtered between 860 to 990 nm, as those are the estimated limits 
of minima for iron crystal field absorptions and removes invalid 
results. Additionally, R2 and standard error were calculated for 
each fitted spectrum.  

The hyperspectral aerial HyMap datasets (see Appendix) 
were atmospherically corrected by HyVista Corporation using 
a proprietary radiative transfer methodology, have a pixel size 
(ground sample distance) of 5 m, and spectral resolution of 15 
nm over 128 bands from 450-2500 nm. Atmospheric effects in 
the imagery are strong and prevent utilization of bands between 
1240-1500 and 1740-2040 nm for ground surface analysis, 
limiting the number of usable bands to ~100. From the limited 
number of usable bands, the HyMap spectra don’t clearly 
display shoulders and minima of absorption features, which is 
compounded by significant amounts of noise, thus 
classification maps prove more useful than direct investigation 
of the spectra. Processing of the hyperspectral imagery was 
performed in ENVI 5.6 where supervised spectral angle mapper 
(SAM) classification images were produced using manually 
trained classes (included in Appendix) and a maximum spectral 
angle threshold of 0.18 for Lake Brown and 0.2 for Twin Lakes. 
The spectra of pixels throughout each scene were reviewed to 
have a general understanding of which regions reflect very 

This article has been accepted for publication in IEEE Transactions on Geoscience and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2023.3272859

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



5 
TGRS-2022-03192 

general spectral and land-cover classes. Training data for bright 
halite crust, dark halite crust, phyllosilicates-or-gypsum, iron 
rich sediments, iron rich soil under light grassy vegetation 
cover, dense vegetation, and grassy vegetation classes were 
manually selected as multiple regions of interest throughout the 
scene(s). Given the spectral resolution and noise of the HyMap 
data, the classification map results are to be assessed as general 
representations of surface distribution rather than precise 
representations. However, SAM rule images (included in 
Appendix) indicate most classified pixels have spectral angles 
significantly less than the maximum spectral angle threshold. 
Although no field measurements of mineralogy were collected 
to provide an exact ground-truth reference of these data, 
multiple lines of analyses by the team through the years 
evaluating the composition and spatial distribution of the 
sediment mineralogy in these landscapes support the training 
class choices and spectral interpretations presented here. 

III. RESULTS 

A. Absorption Minima Detection and Polynomial Fitting 
Performance and Errors 

Although the accuracy of automatic absorption detection 
algorithms will vary depending on the spectral resolution of the 
data and characteristics of the absorptions of interest 
(symmetry, depth, etc.), an assessment of the algorithm’s 
performance on 100 randomly selected spectra from this study 
indicate the algorithms are very reliable for investigating 
variability of absorption minima. From the 100 randomly 
selected spectra, 235 detected absorption minima are compared 
to the manually determined minima which correlate with an R2 
of 0.99 and average minima-wavelength difference of 0.31 nm. 
These results indicate the automatic minima detection 
accurately determines the minima wavelength with only one 
false-positive detection out of 235. However, the automatic 
detection does appear to miss on detecting some broad or weak 
H-O-H, gypsum, and alunite absorptions, resulting in the 
percent of absorptions detected to be roughly 85% and a max 
false-negative frequency of 15%. This suggests the automatic 
detection works moderately well at detecting absorptions for 
which minima needs to be determined, but also that some error 
must be considered when assessing or comparing the quantity 
of detected absorptions. These pitfalls may be addressed by 
changing the detection sensitivity for specific wavelength 
ranges. 

Separately, our initial assessment of the 2,588 spectra shows 
that for a vast majority of spectra with a diagnostic ~900-950 
nm iron oxide crystal field absorption there is a small but 
significant absorption overprinted on the broad crystal field 
feature at ~965 nm. To avoid this or other overprinted features 
from being detected as the minima location for iron crystal field 
absorptions, fourth-degree polynomial fitting is applied and 
used for calculation of the minima wavelength between 820 and 
1200 nm. The results of polynomial fitting show an excellent fit 
(Figure 4), with an average R2 of 0.924 and successful removal 
of any overprinted absorptions while retaining the overall shape 
and minima location of the crystal field feature. The high R2 

provides significant confidence in the calculated minima 
wavelength for each spectrum. Unlike the absorption detection 
method, all minima between 820 and 1200 nm should be  

Fig 4. Example polynomial fit spectra alongside the continuum 
removed spectra, demonstrating the quality of fit, various iron 
minima locations, and overprinted features 
 
 
accounted for and initial assessments observed no false-positive 
minima calculations. 

B. Spectral Minima Distributions 
The subsequently calculated minima wavelength for all iron 

crystal field absorption showed differing distributions for each 
core dataset, where two of the cores display a bimodal 
distribution and the other two a broad or skewed distribution 
(Figure 5 a-d). The two datasets with bimodal distributions are 
LA2 and LB1, where the lower wavelength distributions have 
an average of ~914 and ~891 nm, respectively. Likewise, the  
upper wavelength distributions have an average wavelength of 
~970 and ~945 nm for LA2 and LB1, respectively. The 
unimodal datasets of LA1 and LB2 have average wavelengths 
of ~918 and ~926 nm, respectively. Results from the Twin 
Lakes surficial sample spectra show a unimodal distribution 
skewed to larger wavelengths, with an average wavelength of 
932 nm. 

The absorption detection results illustrate similar absorption 
distributions among the study regions for commonly detected 
H-O-H and Al-OH absorptions (Figure 5 e-h). Between these 
two types of features, the H-O-H absorptions exhibit the 
greatest amount of wavelength variability for minima, where 
the ~1900 nm H-O-H feature distributions have an average 
range of ~32 nm and minima of 1931 nm. In contrast, the Al-
OH absorption distributions have an average range of ~10 nm, 
with the lowest range for a dataset being only ~2 nm, and 
minima of 2207 nm. Considering the spectral resolution of the 
ASD spectrometer, these small spectral differences may be 
insignificant. Twin Lakes samples show similar distributions, 
with an average minima wavelength of 1920 nm for upper H-
O-H absorptions and 2209 nm for Al-OH absorptions. 

The number of absorptions detected as features associated 
with gypsum, alunite, and jarosite for the study sites is less than 
half of that for either iron oxides or phyllosilicates. The average 
wavelength associated with the diagnostic gypsum absorption 
is 1750, 1752, 1750, 1750, and 1755, for the LA1, LA2, LB1, 
LB2, and Twin Lakes datasets, respectively. The average range 
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Fig 5. ASD FieldSpec-derived spectral absorption wavelength-
center distributions showing absorption detections versus 
wavelength with bin sizes of 10 nm for iron oxide features from 
Lake Aerodrome (a-b) and Lake Brown (c-d), and H-O-H and 
Al-OH features from Lake Aerodrome (e-f) and Lake Brown 
(g-h). Yellow line at 935 nm (a-d) indicates average wavelength 
of jarosite for sediments observed in this study. 

 
 

in wavelength of the gypsum feature is ~9 nm, indicating the 
features minima is consistent between the study regions. 
Alunite detections have an average wavelength of 2319 for both 
LA datasets and 2320 nm for both LB datasets, where the range 
of detections span from 2315 to 2325, the limits set for 
detection, for each dataset. Twin Lakes alunite detections show 
an average wavelength of 2318 nm and range of 9 nm.  

Detections of jarosite are limited, with only 22 detections in 
the LA2 dataset and one detection in the LB2 dataset. However, 
of the 54 Twin Lakes samples, there are 20 jarosite detections. 
The average wavelength of the jarosite absorption in the LA2  
dataset is 2267 nm, the single absorption in the LB2 dataset has 
a wavelength of 2263 nm, and the average of in the Twin Lakes  
dataset is 2266 nm. For all the spectra containing a diagnostic 
jarosite absorption, the corresponding iron crystal field 
absorptions have an average minima wavelength of 935 nm and 
a range of ~70 nm.  

C. Surficial Meter-Scale Hyperspectral Imagery 
I. Brown Region Classification Map 

Our classification image results for the Lake Brown site, 
representing the Brown region, indicate much of the iron oxide 
bearing sediments are in a paleochannel system northwest of 
the main body of Lake Brown (Figure 6a, b). Lake Brown has 
few iron bearing sediment detections, but there is a thin 5-50 m 
rim of iron oxides bordering much of the dry lakebed (Figure 
6c). During the time of image acquisition, much of the lakebed 
is dry, such that there is a large salt crust spanning the lake 
bottom (Figure 6c). Sediments displaying H-O-H and possible 
metal-OH absorptions are found to be associated with some 
sections of the paleochannel network to the northwest (Figure 
6b) as well as almost all dry lakebeds in the scene (Figure 6a, c, 
d). 

For the dozens of other dry lake beds in this scene that are a 
part of the Brown region, there is a consistent pattern of iron 
oxide detections occurring on the borders of lake bodies, even 
especially small (<~0.05 km2) shallow lake/crustal bodies. A 
small percentage of the shallow dry lake beds have an identified 
salt crust. Proximal to the paleochannel system, as well as the 
shallow dry lake beds, there is dense vegetation. Further from 
these features are less dense, grassy vegetation, which appear 
to be part of agricultural land use. Much of the grassy vegetation 
has sparse coverage with space between the vegetation, which 
results in mixed signals between the soil underneath and 
vegetation, leading to a weak but detectable iron oxide feature. 
Iron rich sediments account for 8%, bright and dark crusts 
account for a combined 13%, phyllosilicates-or-gypsum 
account for 13%, dense vegetation accounts for 11%, grassy 
vegetation accounts for 21%, and iron rich sediments under 
grassy vegetation accounts for 34% of the mapped area. 
II. Norseman Region Classification Map 

Our classification image results for the Twin Lakes HyMap 
imagery in the Norseman region indicates a markedly different 
landscape (Figure 7), with many more scattered lakes of much 
smaller size and an absence of obvious associated paleochannel 
features. To the northeast of Twin Lakes, towards the top of the 
map, is a large shallow lakebed which predominantly hosts 
phyllosilicates or gypsum, with 50-600 m wide scattered salt 
crusts. Iron oxides bound the extent of much of the lakebed 
(Figure 7b) but are relatively narrow in width. A concentrated 
zone of pixels with detected iron oxides proximal to or in 
contact with phyllosilicates or gypsum is present for the area 
just to the northeast of this large lakebed, associated with 
smaller lakebeds.  

All of the other lakebeds in the scene have salt crusts and a 
consistent pattern where the bright crust is to the north and the 
dark crust is to the south of the crustal body (Figure 7c,d). 
These lakebeds are rimmed with phyllosilicates/gypsum 
towards the center-outwards then iron oxides near the margins, 
but some of these beds have oblong phyllosilicates/gypsum 
and iron rich sediments stretching to the east (Figure 7c). In 
the aerial image, Twin Lakes is a small lakebed near the 
bottom of the map (Figure 7d) with a road transecting through. 
The road transecting Twin Lakes is identified as iron rich 
sediments, which is consistent with field observations that 
roads in the region are paved with iron oxide concretions [2]. 
With regards to percent of area mapped, iron rich sediments  
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Fig 6. True-color (a) and classification (b) map of Lake Brown and the proximal area, with insets (c-e) to provide extra detail for 
regions with features of interest. Yellow = bright crust, orange = darker crust, gray = phyllosilicates or gypsum, red = iron rich 
sediments and dunes, pink = iron rich soil underneath grassy vegetation, dark green = dense vegetation, light green = grassy 
vegetation. White pixels indicate unclassified pixels that didn’t fall within the max spectral angle of 0.18 for any class. 
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Fig 7. True-color (a) and classification (b) map of Twin Lakes and the proximal area, with insets (c-e) to provide extra detail for 
regions with features of interest. Yellow = bright crust, orange = darker crust, gray = phyllosilicates or gypsum, red = iron rich 
sediments and dunes, pink = iron rich soil underneath grassy vegetation, dark green = dense vegetation, light green = grassy 
vegetation. White pixels indicate unclassified pixels that didn’t fall within the max spectral angle of 0.20 for any class.
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account for 6%, bright and dark crusts account for a combined 
6%, phyllosilicates-or-gypsum account for 17%, dense 
vegetation accounts for 15%, grassy vegetation accounts for 
24%, and iron rich sediment under grassy vegetation accounts 
for 31%. Overall, the Lake Brown map has a greater 
percentage of halite crusts and iron rich sediments while the 
Twin Lakes map has a greater percentage of phyllosilicates-
or-gypsum as well as grassy and dense vegetation classes. 

D. Observations from Microscopy Relevant to Spectra 
Thin sections from the LA2 core provide a glimpse into the 

complex nature of these near-surface sediments and help to 
understand what a spectrometer is observing at mm-cm scale 
field-of-views. High porosity, estimated between 10-40%, is  
observed for nearly all the near-surface thin sections, as shown 
by the blue infilling epoxy (Figure 8). Mineralogical 
identification using microscopy petrographic techniques is 
challenging in these sediments given high levels of physical 
mixing and extremely small grains, but allows for general 
assessment of composition and texture. Iron oxide cementation 
in radial formation patterns is common within the phyllosilicate 
matrix which form in close proximity and assemble as bands or 
unorganized zones in larger field-of-views (Figure 8a-b, f). The 
most porous zones are associated with unconsolidated sub-
angular to sub-rounded grains of gypsum and quartz with 
patchy intergranular iron oxide cementation (Figure 8b, e-f). 
Tan colored, extremely fine-grained sediment interpreted as 
phyllosilicates are widely observed throughout thin sections 
that mainly form in cohesive packets encompassing much of the 
thin section.  

Dense iron oxide cementation appears to be most associated 
with unconsolidated grains. Additionally, it is common to find 
small radial patches of iron oxide superimposed on gypsum 
grains (Figure 8d) and as delineating gypsum growth bands 
(Figure 8c). Given the high amounts of SiO2 reported in 
previous studies, an abundance of quartz is expected, however, 
quartz grains are challenging to identify in thin section, 
suggesting the quartz may be very fine grained, coated by iron 
oxides, or amorphous opal.  

Our observations illustrate that, in reference to an ASD 
spectrometer with a ~cm-scale field-of-view, the spectral 
signals are the result of light interacting with the same 
mineralogies but in differing physical mixing conditions. 
Ultimately, this leads to spectra with common characteristics 
due to the additive nature of spectra. High porosity, and the 
association of porosity with iron oxide coatings, suggests iron 
oxides are likely detected by the spectrometer even if the 
sample appears to lack visible iron. Similarly, high porosity 
allows for multiple internal reflections which amplifies spectral 
mixing. Given the small size of grains, precipitates, and 
mineralogical zones in many of the thin sections, it is also likely 
that the individual fiber optic strands, separating the 
spectrometer FOV, may be viewing different mineralogies. 

IV. DISCUSSION 

A. Detection Frequency Distribution of Minerals 
Associating spectral observations to relative abundances 

(recurrence based, not volumetric) of major mineral groups 
found between study sites is potentially a valuable tool to assess 

Fig 8. Petrographic microscopy images of thin sections from 
the LA2 (Lake Aerodrome) dataset, illustrating a) globular iron 
oxides, patchy phyllosilicates, and possible rozenite (globular 
structure in upper right), b) intergranular iron oxide growth with 
gypsum and quartz grains as well as surrounding 
phyllosilicates, c) gypsum grains with growth bands including 
iron oxides and surrounded by intergranular iron oxides, d) 
gypsum and quartz grains with radial iron oxides growing 
between and on grains, e) unconsolidated gypsum and quartz 
grains with intergranular iron oxide growth, f) unconsolidated 
gypsum and quartz grains with dense bands of intergranular 
iron oxide growth. Redder iron oxides are more associated with 
hematite, while greener iron oxides are more associated with 
goethite. Blue infilling is epoxy, representing pore space. 
 
 
mineralogical distributions and provide a spectral bulk analysis 
which may be compared to appropriate quantitative chemical 
analyses. To accomplish this, the percentage of spectra from 
each dataset with detections for a specific mineral is assessed. 
It is assumed, given the large number of spectra per dataset (n 
> 500), that the combination of the two datasets from Lake 
Aerodrome and Lake Brown provide a representative 
comparison of observed spectral features for each location and 
is a sufficient method to probe regional relative mineral 
abundance distribution based on the detection frequency. Data 
from Twin Lakes are also included, although the dataset is 
much smaller, represents only surficial sediments and rocks, 
and is likely influenced by sample bias, but still provide a 
reference to compare to the large sample datasets. The 
assessment provides a contrasting comparison between the 
study regions and highlights dominantly detected minerals 
throughout all the sediments (Figure 9). 

Based on the comparisons, the greatest mineralogical 
differences amongst these three sites are associated with 
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Fig 9. Detection frequency (percentage) of subsurface sediment 
spectra with mineral species detections per study area (n = 
number of total spectra). Bright green (left bars) are Lake 
Aerodrome, dark green are Lake Brown (center bars), and light 
blue (right bars) are Twin Lakes. Error bars indicate possible 
range of overlap (15%) associated with the initially reported 
frequency of false-negative (missed) absorptions when using 
the automatic detection method. No error bars are shown for 
iron oxide detections as all spectra were deliberately assessed 
for iron oxides based on polynomial fitting. 
 
 
sulfates and iron oxides. Phyllosilicates are widely detected and 
show the greatest consistency of abundance percentage, which 
is expected given the ubiquitous nature of phyllosilicates 
among these highly weathered sediments. Of all the spectra, 
98% contain detected phyllosilicates. Iron oxides are the second 
most widely detected mineral species, but there are significant 
differences between detection percentages for spectra from the 
Brown region compared to the Norseman region. Detection 
percentages for iron oxides at Lake Brown are approximately 
95%, nearly 20% greater than at Lake Aerodrome or Twin 
Lakes. Although detection percentages for gypsum are low for 
all the datasets, Lake Brown detections appear to be 
significantly lower at ~3% than the ~8-12% at the Norseman 
sites. Jarosite detections are extremely rare in the Lake Brown 
sediments, while it is detected in minor amounts within the 
Lake Aerodrome sediments and in great amounts for the 
surficial Twin Lakes samples. Alunite appears to be the third 
most common mineral and is detected in more than 50% Lake 
Brown and Twin Lakes spectra, but only 8% of Lake 
Aerodrome spectra. Conflicting differences between 
regionality for alunite detections suggests Twin Lakes may 
share some greater similarities with Lake Brown. 

Overall, the detection frequency results illustrate there are 
greater potential differences between the study areas than 
initially expected, given each site shows a unique distribution 
of detection frequencies. These differences indicate that 
although these sediments illustrate similar regional processes, 
the geochemical conditions at each site must be significantly 
influenced by other factors besides regional fluid composition 
and redox reaction-front oscillations. Additionally, these results 
dissuade the hypothesis that Lake Aerodrome and Twin Lakes 

sediments should share more similarities in comparison to Lake 
Brown sediments. However, the smaller, surficial dataset from 
Twin Lakes shows comparable detection percentages for iron 
oxides, phyllosilicates, and gypsum compared to the Lake 
Aerodrome, which suggests smaller spectral datasets may 
provide similar interpretations compared to larger, more 
comprehensive spectral datasets. 

The detection results for Lake Aerodrome compare well to 
LA2 subsample XRD results (Table A2), which indicate that 
the most-to-least abundant minerals are kaolinite, gypsum, iron 
oxides, alunite, and jarosite. This agrees with the detection 
frequency results, except that XRD indicates gypsum is more 
prevalent than is suggested from spectral interpretations. 
Similarly, comparing detection frequency results to Lake 
Aerodrome and Twin Lakes subsample pXRF results (Tables 
A3 and A4) show agreement, in that greater abundances of 
pXRF detected Al and S are associated with Twin Lakes 
samples, which show a greater percentage of alunite and 
jarosite absorptions. These comparisons help provide more 
confidence in the spectral interpretations. However, in general 
it is difficult to compare volumetric compositional analyses, 
such as XRD, to surficial compositional analyses, such as 
reflectance spectroscopy. 

B. Interpretations from Minima Distributions 
From Kernel Density Estimate (KDE) distributions of ASD 

data, more detailed comparisons can be assessed for each 
diagnostic mineral absorption feature. KDE distributions for 
iron oxide crystal field absorptions highlights the separation 
between unimodal and bimodal distributions between these 
datasets as well as the complexity of variability (Figure 10a).  

Although the distributions from both Lake Aerodrome 
represent sediments from the same study area, the LA1 iron 
oxides are densely concentrated around ~910 nm while the LA2 
iron oxides are offset ~5 nm higher and exhibit a pronounced 
shoulder from a lesser occurring distribution of absorptions 
near 960 nm. The LA2 iron oxides extend into the longer 
wavelengths more than any of the other datasets. Lake Brown 
KDE distributions show even greater differences, where the 
LB1 iron oxides show a stronger bimodal distribution with 
different average wavelength locations than the other datasets. 
Additionally, the LB2 iron oxides distribution appears more 
like the LA2 distribution than compared to the LB1 distribution.  

Provided that jarosite detections are minimal, and jarosite 
contributes to absorptions near ~930 nm, the existing 
continuum of absorption minima between ~900 to ~960 nm  
must indicate either grain size variations of hematite or 
goethite, mixing of hematite and goethite, or a combination of 
grain size variation and mixing. Overall, the spectral results 
indicate the predominant form of iron oxides in these sediments 
is hematite rather than goethite. The cause for a dominance of 
hematite is unknown, but it is likely inherently related to 
aqueous conditions of formation, such as pH, temperature, 
concentrations of Al, and other complex factors controlling iron 
oxide speciation or transformation [32]. Alternatively, 
recycling of iron oxide sediments on the surface by wind may 
be partly responsible. It is likely paleochannel deposits near 
Lake Brown and similar sites are rich in iron-rich sediments 
resulting from physical reworking. 
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Fig 10. Subsurface sediment ASD spectra derived kernel 
density estimate (KDE) derived probability density functions of 
a) iron oxide absorption feature wavelength distributions (Kf of 
0.5), b) lower-SWIR H-O-H or O-H (~1400 nm) absorption 
feature wavelength distributions (Kf of 0.005), c) diagnostic 
~1750 nm gypsum absorption feature wavelength distributions 
(Kf of 0.001), d) upper-SWIR (~1900 nm) H-O-H absorption 
feature wavelength distributions (Kf  of 0.005), e) Al-OH 
absorption feature wavelength distributions (Kf of 0.001), f) 
diagnostic ~2320 nm alunite absorption feature wavelength 
distributions (Kf of 0.005). Kf represents the author-set KDE 
factor (kde.factor) used by the SciPy.stats Python package [29] 
to scale the covariance matrix and control bandwidth size. 
Included in each panel is the number of detected absorptions for 
each dataset, denoted by “n = #”. 

 
 
The distribution for LA1 is interpreted to indicate a 

predominantly hematite-rich population with low amounts of 
grain size variation given the relatively constrained range and 
average wavelength of ~905 nm. In contrast, the bimodal 
distribution and shift to higher wavelengths for the LA2 dataset 
is interpreted as a combination of minor amounts of grain size 
variation (to coarser grain size) and mixing of hematite and 
goethite. The LB1 dataset is similar, but with a greater extent of 
grain size variation, possibly to finer grain size, causing the 
bimodal distribution to be shifted ~25 nm lower than the LA2 
distributions. For both the LA2 and LB1 datasets, the distance 
between the average wavelength of the hematite and goethite 
populations are separated by ~50 nm, likely reflecting grain size 
characteristics. The hematite and goethite grains are likely of 
similar size for each individual dataset, given the distance of 
~50 nm is the nearly the same between the datasets. 

Spectral features typically associated with phyllosilicates 
show the variability of Al-OH absorptions minima wavelength 
is minimal and unlikely to capture environmental variability 
between sites. Significant variation up to ~20 nm is observed 
for the H-O-H absorptions, particularly the ~1900 nm H-O-H 
absorption (Figure 10b,d), while minimal variation in 
wavelength position is observed between sites for the Al-OH 
absorption near ~2207 nm (Figure 10e). The most significant 
variations for the Al-OH absorption are associated with well- 
defined Al-OH doublets in the LA2 dataset, as seen by the lower 
wavelength shoulder in the LA2 probability density function 
possibly attributed to montmorillonite or alunite (Figure 10e). 
It may be possible for the ~1970 nm alunite absorption to be 
shifted into the range of these Al-OH absorptions but there 
appear to be no other populations of absorptions between 2195 
and 2220 nm. 

For gypsum detections, the 1750 nm absorption feature is a 
reliable feature in these sediments, in that the feature shows 
strong consistency between study areas and little variation 
among the datasets. All datasets share an average absorption 
wavelength of 1750 nm (Figure 10c). The range of the feature 
appears to be relatively constrained, as the LA1, LB1, and LB2 
datasets show the feature range 6, 4, and 3 nm, respectively, 
while the LA2 dataset shows significant variation near 1750 
nm. The variation observed for the LA2 dataset is likely 
attributed to shifted alunite absorptions but may also be due to 
overtones from minor abundances of other hydrated minerals or 
false-positive detections as there is moderate noise for some 
LA2 spectra in this wavelength region that could be falsely 
identified as a small absorption.   

Spectral observations for alunite appear among the most 
valuable to investigate differences between study regions, as the 
absorption exhibits significant wavelength variability between 
datasets and reflects some of the largest regional differences in 
terms of abundance percentage (Figure 10f). Few alunite 
detections are present for the Lake Aerodrome datasets, but 
many are present for the Lake Brown datasets. The average 
wavelength for the LB1 and LB2 datasets are 2318 and 2321 
nm, with ranges of 9 and 6 nm, respectively. There are 
significantly more absorptions near 2318 nm for the LB1 
dataset. The Lake Aerodrome datasets contain some features 
near 2320 nm but only the LA2 datasets contain detected 
features with a distribution averaging ~2320 nm, albeit not 
nearly as many as observed in the Lake Brown datasets. The 
smaller dataset from Twin Lakes contrasts Lake Aerodrome by 
containing significant amounts of alunite detections, 
highlighting regional differences.  

Detections for jarosite are minimal for the subsurface 
datasets, with only 1.4% of Lake Aerodrome and 0.1% of Lake 
Brown spectra containing the diagnostic 2262 nm absorption, 
suggesting jarosite also highlights significant geochemical 
differences between regions. 

These comparisons highlight the expected spectral nature of 
highly weathered sediments and show that although the spectra 
are manifested by mineralogical mixtures, some features appear 
more prone to significant variations in minima wavelength 
while others are not. This suggests investigators should avoid 
using a single minima wavelength for detection of diagnostic 
features and should take caution when interpreting the cause of 
spectral shifts as variability is to be expected.  
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C. Surficial Mineralogical Distributions 
Classification map results for Lake Brown and Twin Lakes 

provides insight into surficial mineralogical distribution, where 
the definition of mineralogical zoning appears more structured 
within the Twin Lakes region compared to the Lake Brown 
region. However, the classification maps show that the Lake 
Brown area is much more dominated by iron rich dune fields as 
well as larger and more cohesive zones of iron rich sediment. 
The Twin Lakes region appears to have less connectivity 
between lakebeds, more radial shaped lakebeds, and more 
significant zoning of mineralogies within each lakebed. Most of 
the lakebeds show a pattern of darker crust to the south of 
brighter crust, alongside a rimming pattern of phyllosilicates 
bounded by iron oxides. Some lakebeds have a teardrop shape, 
where the tailing end of the lakebeds contain a significant 
zoning of phyllosilicates to iron oxides in an eastward direction.  

Overall, surficial distributions appear more dynamic for the 
Lake Brown environment, which may indicate this region 
undergoes more active processes on the surface in comparison 
to the Twin Lakes region. Most importantly, however, is the 
recognition of more cohesive zones of iron which may explain 
the greater abundance of iron detections in spectra from Lake 
Brown. At Lake Brown the surficial iron is well distributed by 
the network of iron rich dune fields, associated with 
paleochannel fill, which may act to concentrate iron and aid in 
distribution of iron through subsurface sediments when 
groundwater levels are high and/or when there is meteoric 
input. 

Due to a low signal to noise ratio and limited spectral 
resolution this study does not incorporate direct assessment of 
hyperspectral imagery spectra, but future studies should aim to 
incorporate high-spectral-resolution hyperspectral imagery for 
assessing absorption features for surficial sediments. Likewise, 
it would be valuable to compare absorption features between 
subsurface and surficial sediments. 

D. Spectral Links to Regional Bedrock Geology 
Given local geochemical links to bedrock weathering history, 

comparisons of spectroscopic observations from different sites 
are expected to reflect regional similarities or differences in 
bedrock lithology, to some extent. Bedrock lithologies in each 
region influence the modern geochemical characteristics found 
at sites within the basins, as these are the predominant rocks 
that have been weathered over long periods to provide the 
chemical constituents observed in the modern landscape 
proximal to each study area. As a generalization, based on a 
regional (1:100,000) scale interpreted bedrock geology map, 
bedrock lithologies in the Brown region are predominantly 
igneous granitic or meta-igneous felsic intrusive units, 
alongside other various small occurrences of mafic and 
sedimentary units  (Figure 2; via Government of Western 
Australia) [27]. In contrast, bedrock lithologies in the 
Norseman region are predominantly Precambrian igneous and 
metamorphic rocks of various compositions, including both 
mafic and felsic rocks. In summary, the Brown region is heavily 
dominated by felsic bedrock material with a minor mafic 
component, while the Norseman region differs in that there is a 
complex distribution of mafic and felsic rocks. 

Local structural features may have some impact on local 
geochemistry, particularly at the Twin Lakes which are 

proximal to a large fault. Both regions have multiple fault 
systems spanning much of the area, typically in either a SE-NW 
or SW-NE orientation. However, the Norseman region has a 
complex zone of faulting to the north surrounding the Lake 
Aerodrome site, resulting in various bedrock lithologies in 
contact over relatively short spatial scales. The Lake Brown and 
Twin Lake sites are both proximal to long fault systems, 
however, Twin Lakes is less than 1 km from the fault system, 
while Lake Brown is over 10 km from the proximal fault 
system. Additionally, although Lake Aerodrome is surrounded 
by proximal faults, the closest fault is ~3 km away.  

The Norseman sites share more structural similarities but 
somewhat opposing bedrock regimes, while the Brown region 
appears to be controlled by a granitoid bedrock lithology and a 
less structurally affected landscape. This is observed as Lake 
Brown is situated on igneous felsic intrusive (granitoid) 
bedrock contacting meta-igneous felsic intrusive (granitoid) 
bedrock ~1.5 km away, which is also underlying the Twin 
Lakes site. In contrast, Lake Aerodrome is situated on igneous 
mafic volcanic bedrock with a complex distribution of igneous 
felsic volcanic, sedimentary siliciclastic, metamorphic protolith 
unknown: gneiss, igneous mafic intrusive, meta-igneous felsic 
intrusive, igneous granitic, and igneous ultramafic volcanic 
bedrock units (names based on [26]) all within a 15 km radius.  

Although Lake Aerodrome and Twin Lakes share a 
paleodrainage system, their proximal bedrock lithologies differ 
significantly as Twin Lakes is underlain by igneous granitoids 
like Lake Brown but Lake Aerodrome is underlain by mafic 
volcanics (basaltic), based on the regionally interpreted bedrock 
lithologies. In contrast to the regional geological map, field 
observations have noted various bedrock outcrops, such as 
metabasalt and quartzite, at and near Twin Lakes. However, the 
regolith thickness is unusually thin at Twin Lakes, such that the 
surface is mainly hard, consolidated bedrock. This contrasts 
with the other sites where the regolith is over 20 m deep.  

Considering the theoretical weathering evolution of bedrock 
lithologies under typical neutral pH ranges, granitic materials 
will weather to produce a local enrichment in Al3+ and Fe3+ 
alongside altering to produce large amounts of quartz and 
kaolinite (or the chemically equivalent halloysite) as well as 
lesser amounts of iron oxides, particularly goethite from the 
weathering of biotite [33], [34]. Likewise, basaltic bedrock 
lithologies under typical natural pH ranges weather to also 
enrich the weathered rock in Al3+ and Fe3+, albeit less Al3+ 
enrichment than weathered granites, and produce many of the 
same minerals found when weathering granites but with greater 
amounts of iron oxides [34], [35].  

However, under acidic conditions the weathering of basaltic 
materials is drastically different as the resulting rock contains 
more Fe and Mg oxides alongside pyroxenes, with a significant 
loss of major cations to solution and minor production of clays 
[36]. Thus, from the interpreted local bedrock geology proximal 
to the three sites, it is assumed there should be more 
geochemical similarities between Twin Lakes and Lake Brown 
than between Twin Lakes and Lake Aerodrome. This is because 
they are both underlain and surrounded by felsic igneous 
material which would have undergone a similar weathering 
history. The greater abundance of mafic material underlying 
and surrounding Lake Aerodrome would suggest the area 
should have experienced less Al3+ enrichment and greater 
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amounts of iron oxide precipitation compared to the other sites, 
alongside more extensive amounts of weathering as mafic rocks 
weather more rapidly than felsic rocks.  

These expectations from assessment of bedrock lithologies 
under normal pH conditions are corroborated by spectral 
observations associated with Al3+ from each site, as a greater 
percentage of alunite bearing spectra is detected for both Lake 
Brown and Twin Lakes samples, which can be associated with 
local Al3+ enrichment from granitoid weathering. Although 
hematite is in general the most predominant iron oxide, the 
proportion of goethite to hematite absorptions is greater for 
sediments from the Brown region. Goethite has been found to 
be a common phase in more Al rich systems, which may explain 
the abundance ratios between the iron oxides [32]. This 
suggests that regional weathering pathways likely affect the 
resulting ratios between hematite and goethite abundance. 

We hypothesized that a more mafic landscape would host 
more iron oxide as a weathering product, however much less 
iron is detected for Lake Aerodrome than Lake Brown. 
Additionally, although bedrock geology is similar for Lake 
Brown and Twin Lakes, the detection percentage for iron from 
Twin Lakes samples is significantly less than that found at Lake 
Brown and more representative of what is found at Lake 
Aerodrome. Given that Lake Brown is the only site in this study 
associated with an infilled paleochannel (Figure 6c), this may 
suggest other processes, such as redox cycling and desiccation 
in the regionally extending paleochannels, have a critical role 
in driving Fe precipitation and could be responsible for the 
observed differences. This appears to be supported by the 
classification map of Lake Brown, which shows iron oxide rich 
sediments concentrated within the paleochannel sediments. 
Furthermore, theoretical bedrock lithology weathering 
pathways don’t provide any insight to the strikingly nonexistent 
regolith at Twin Lakes or the greater percentage of sulfate 
bearing spectra from Norseman sediments. For example, the 
jarosite detections are only notably found within the Norseman 
region, where it appears jarosite is more abundant in the Twin 
Lakes surficial samples than in Lake Aerodrome sediment 
cores. Additionally, significantly greater amounts of gypsum 
are detected in the Norseman region spectra than for the Brown 
region spectra. In contrast, the prevalence of alunite in the 
Brown region indicates that sulfates are present in significant 
amounts but are more associated with aluminum bearing 
phases, perhaps due to localized iron leaching leading to greater 
aluminum and sulfate availability when oxidized, or aqueous 
conditions more favorable to the precipitation of alunite such as 
lower redox potential (Eh) and/or slightly higher pH.  

When referencing regional geology at scales of 1:100,000 
there are discrepancies between the bedrock lithology and 
expected regolith thickness for the Twin Lakes region. From the 
regional geologic map, the Twin Lakes region shares similar 
regional bedrock lithology to Lake Brown, which boasts a 20+ 
m regolith, but field observations from Twin Lakes have noted 
there is little to negligent regolith. It is possible the absence of 
a notable regolith in this local region is attributed to physical 
removal due to aeolian erosion or due to locally fault-induced 
fluid-flow and sediment transport, as the Twin Lakes sediments 
show evidence of active diagenetic reaction fronts and water-
rock interactions [12], [13]. This highlights the possibility that 
regional differential weathering in southwestern Australia is 

significantly variable. Similarly, it is likely the regions 
underwent differing weathering conditions since the start of 
long-term weathering, as Australia has transitioned to the 
subtropics region over the past ~100 million years since 
splitting from Antarctica at latitudes as low as ~70° S [14], [37]. 
As Australia transitioned to more tropical latitudes the 
weathering rate increased with increasing moisture, and there 
could have been a greater climatic differential between these 
two regions as the continent transitioned to a more stable 
tectonic position.  

Regional surface expressions have been varying since long-
term erosion has begun, and the current drainage basins may not 
reflect the extent of paleodrainages in the recent geological 
past. Additionally, groundwater flow, which is primarily 
independent of drainage boundaries, must have greater 
importance than connectivity of surface waters in distinct 
paleodrainages. Likewise, microbial activity has been observed 
throughout these lakes but their influence on mineralogical 
precipitation is not well understood [4], [10], [38]. These 
temporally complex factors must have had a significant 
influence on how regional sediments evolved to their current 
mineralogical expressions and account for observed 
mineralogical differences between sites. Thus, future studies 
should consider the past weathering regime and hydrology 
when comparing mineralogical and geochemical differences 
throughout Western Australia, as well as differences in 
microbial populations. 

The weathering evolution of local bedrock geology appears 
to have significant control over the Al-bearing mineralogies 
produced within the thick regolith, however, there must be other 
important controls to account for differences in iron oxides and 
sulfates. For example, an alternate explanation for the lesser 
amounts of iron oxides detected in Lake Aerodrome spectra 
could be associated with regional fault-induced fluid-flow, with 
sufficiently acidic and reductive waters to strip iron from the 
regional sediments. Alternatively, it may be that the 
paleochannel system associated with Lake Brown sediments 
encourages more efficient iron cycling and transport, leading to 
the observed surplus of iron in Lake Brown sediments.  

E. Implications for Study of Martian Sediments and Rocks   
The unusual sediments from acid-saline lake systems in 

Western Australia may serve as terrestrial analogs for some 
sediments and rocks on Mars [38]–[41]. The mineral suite 
detected in our study, consisting of sulfates, chloride, 
phyllosilicates, iron oxides, amorphous silica, and a siliciclastic 
component (Table 1), has been detected in several places on 
Mars, including at Meridiani Planum (i.e. [42], [43]). Our study 
found that both textural data and compositional data at different 
scales are important clues in the interpretation of formation 
processes. In addition, analyses on Mars have also attempted to 
resolve textural and compositional sediment and rock 
characteristics in this manner. Spectroscopic analyses, 
including reflectance spectroscopy, is commonly used by 
orbiters for remote observations and by rovers for both remote 
and proximity science. However, making interpretations from 
spectral data of martian sediments and rocks can be 
challenging. This study’s documentation of reflectance spectra 
from fine-grained, mineralogically mixed sediments from a 
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terrestrial extreme environment provides a comparator for 
reflectance spectroscopic data from Mars. 

V. CONCLUSIONS 
The use of reflectance spectroscopy provides another 

perspective for mineralogy, surface processes, and weathering 
evolution for the sediments at extremely acid-saline lakes in 
southern Western Australia. The combination of geochemical 
and textural observations shows the complexity of this natural, 
modern setting. In this study, reflectance spectroscopy has 
enhanced the understanding of regional mineralogical 
distribution and prompted new inquiries regarding the 
relationship between weathering evolution and the observed 
abundance of mineralogies. 

 

APPENDIX 
 

Data repository of reflectance spectra, hyperspectral 
imagery datasets, SAM training data shapefiles, SAM rule 
images and processing specifications, classification maps, 

supplemental XRD data, and supplemental pXRF data: 
https://doi.org/10.5281/zenodo.7765030 

 
Python package for detecting absorption minima locations: 

https://github.com/radwinskis/RSAbs 
 

Python functions used for polynomial fitting and absorption 
minima calculation: 

https://github.com/radwinskis/Spectra-Polynomial-Fitting 
 

 
Table A1. Summary of previous studies that have identified alunite, goethite, gypsum, halite, hematite, jarosite, and kaolinite 

at Lake Aerodrome, Lake Brown, and Twin Lakes. X = identified by previous investigator(s) (followed by references). 

 

 

 

 

 

 

Table A2. Synthesized sum, average, max, and standard deviation of XRD whole-rock weight-percent data for 33 subsamples 
from the LA2 Lake Aerodrome core dataset, with the minerals of focus highlighted gray. Minerals are sorted from most to least 
average weight percent (left-to-right). Data from Dr. Stacy Story [26]. See appendix datasets for complete LA2 XRD dataset. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 Lake Aerodrome Lake Brown Twin Lakes 
Alunite X [12], [13] X [8], [13] X [1], [9], [12], [13] 
Goethite X [1], [12], [13] X [1], [13] X [1], [12], [13] 
Gypsum X [1], [9], [12], [13] X [1], [9], [13] X [1], [12], [13] 
Halite X [1], [12], [13] X [1], [13] X [1], [12], [13] 
Hematite X [1], [12], [13] X [1], [13] X [1], [12], [13] 
Jarosite X [12], [13] X [13] X [1], [9], [12], [13] 
Kaolinite X [1], [12], [13] X [1], [13] X [1], [12], [13] 

 Kaolinite Quartz Halite Gypsum Dolomite Palygorskite Goethite Pyrite K-spar 

SUM 1023.5 975.0 371.0 168.0 126.0 81.0 80.0 73.0 63.5 
AVG 31.0 29.5 11.2 5.1 3.8 2.5 2.4 2.2 1.9 
MAX 76.0 83.0 68.0 78.0 63.0 63.0 12.0 28.0 21.0 
σ 22.4 24.0 14.2 13.9 15.0 10.8 3.2 6.5 5.1 

 Ca-spar Clinochlore Anatase Amphibole Biotite Lepidocrocite Hematite Siderite Amesite 
SUM 60.5 53.0 48.5 31.0 29.5 26.0 22.0 22.0 15.0 
AVG 1.8 1.6 1.5 0.9 0.9 0.8 0.7 0.7 0.5 
MAX 33.0 31.0 10.0 15.0 15.0 17.0 10.0 22.0 15.0 
σ 6.1 6.4 2.3 3.1 3.5 3.3 2.2 3.8 2.6 

 Alunite Eucryptite Talc Annite Jarosite Periclase Ankerite Ilmenite 
SUM 10.5 6.0 5.0 4.5 3.0 1.0 1.0 0.5 
AVG 0.3 0.2 0.2 0.1 0.1 0.0 0.0 0.0 
MAX 3.0 2.0 3.5 2.0 3.0 1.0 1.0 0.5 
σ 0.8 0.6 0.6 0.4 0.5 0.2 0.2 0.1 
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Table A3. Sum, average, max, and standard deviation of portable X-Ray Fluorescence (pXRF) surficial elemental results (units 
of uncorrected XRF counts) from 58 subsamples of the Lake Aerodrome cores. The table is sorted from highest-to-lowest 

average, and elements outside the ten highest average values are not included. Instrument used is the Bruker S1 TITAN using 
dual method with MudrockAir specifications. See appendix datasets for complete pXRF dataset. 

 Cl Si Fe Al S 
SUM 1188.1 239.7 194.3 57.4 51.4 
AVG 20.5 4.1 3.4 1.0 0.9 
MAX 42.0 16.1 24.1 9.3 12.0 
σ 11.0 4.6 5.3 2.0 1.5 

 Mg Ca K Ti Ba 
SUM 32.7 28.3 10.8 4.3 0.8 
AVG 0.6 0.5 0.2 0.1 0.0 
MAX 3.1 5.9 1.1 0.5 0.1 
σ 0.4 0.8 0.3 0.1 0.0 

 Table A4. Sum, average, max, and standard deviation of portable X-Ray Fluorescence (pXRF) surficial elemental results (units 
of uncorrected XRF counts) from 14 subsamples of the Twin Lakes sample set. The table is sorted from highest-to-lowest 

average, and elements outside the ten highest average values are not included. Instrument used is the Bruker S1 TITAN using 
dual method with MudrockAir specifications. See appendix datasets for complete pXRF dataset. 
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